11 research outputs found

    Design and implementation of an observer-based soft sensor for a heat exchanger

    Get PDF
    The objective of this work is to describe step-by-step how to implement an observer-based soft sensor in order to estimate process variables for which a hardware sensor is not available. The design and implementation procedure is illustrated by applying it to a counter-flow double-pipe heat exchanger. The approach used to design the nonlinear observer is based on a simplified mathematical model of the process. Numerical simulations and experiments were performed in a bench-scale pilot plant in order to validate the proposed scheme

    Design and implementation of an observer-based soft sensor for a heat exchanger

    No full text
    The objective of this work is to describe step-by-step how to implement an observer-based soft sensor in order to estimate process variables for which a hardware sensor is not available. The design and implementation procedure is illustrated by applying it to a counter-fl ow double-pipe heat exchanger. The approach used to design the nonlinear observer is based on a simplifi ed mathematical model of the process. Numerical simulations and experiments were performed in a bench-scale pilot plant in order to validate the proposed schemeEl objetivo de este trabajo es describir paso a paso la implementación de un sensor basado en observador para estimar las variables de un proceso para el cual no existe la disponibilidad de un sensor físico. El procedimiento de diseño e implementación se ilustra mediante su aplicación a un intercambiador de calor de doble tubo con flujos a contracorriente. El enfoque empleado para diseñar el observador no lineal se basa en un modelo matemåtico simplificado del proceso. Se desarrollaron simulaciones numéricas y posteriormente pruebas experimentales en una planta piloto (intercambiador de calor) con el fi n de validar el esquema propuest

    Experimental Study on the Performance of Controllers for the Hydrogen Gas Production Demanded by an Internal Combustion Engine

    No full text
    This work presents the design and application of two control techniques—a model predictive control (MPC) and a proportional integral derivative control (PID), both in combination with a multilayer perceptron neural network—to produce hydrogen gas on-demand, in order to use it as an additive in a spark ignition internal combustion engine. For the design of the controllers, a control-oriented model, identified with the Hammerstein technique, was used. For the implementation of both controllers, only 1% of the overall air entering through the throttle valve reacted with hydrogen gas, allowing maintenance of the hydrogen–air stoichiometric ratio at 34.3 and the air–gasoline ratio at 14.6. Experimental results showed that the average settling time of the MPC controller was 1 s faster than the settling time of the PID controller. Additionally, MPC presented better reference tracking, error rates and standard deviation of 1.03 × 10 − 7 and 1.06 × 10 − 14 , and had a greater insensitivity to measurement noise, resulting in greater robustness to disturbances. Finally, with the use of hydrogen as an additive to gasoline, there was an improvement in thermal and combustion efficiency of 4% and 0.6%, respectively, and an increase in power of 545 W, translating into a reduction of fossil fuel use

    Modeling of a Mass-Spring-Damper System by Fractional Derivatives with and without a Singular Kernel

    No full text
    In this paper, the fractional equations of the mass-spring-damper system with Caputo and Caputo–Fabrizio derivatives are presented. The physical units of the system are preserved by introducing an auxiliary parameter σ. The input of the resulting equations is a constant and periodic source; for the Caputo case, we obtain the analytical solution, and the resulting equations are given in terms of the Mittag–Leffler function; for the Caputo–Fabrizio approach, the numerical solutions are obtained by the numerical Laplace transform algorithm. Our results show that the mechanical components exhibit viscoelastic behaviors producing temporal fractality at different scales and demonstrate the existence of Entropy 2015, 17 6290 material heterogeneities in the mechanical components. The Markovian nature of the model is recovered when the order of the fractional derivatives is equal to one

    Control Scheme Formulation for the Production of Hydrogen on Demand to Feed an Internal Combustion Engine

    No full text
    In this work, a control strategy is presented to produce hydrogen on demand to feed an internal combustion (IC) engine. For this purpose, the modeling of the IC engine fueled by gasoline blended with 10 % v/v of anhydrous ethanol (E10) and hydrogen as an additive is developed. It is considered that the hydrogen gas is produced according to the IC engine demand, and that the hydrogen gas is obtained by an alkaline electrolyzer. The gasoline–ethanol blend added into the combustion chamber is determined according to the stoichiometric ratio and the production of hydrogen gas is regulated by a proportional and integral controller (P.I.). The controller reference is varying according to the mass flow air induced into the cylinder, in order to ensure an adequate production of hydrogen gas for any operating condition of the IC engine. The main contribution of this work is the control scheme developed, through simulation, in order to produce hydrogen on demand for any operating point of an internal combustion engine fueled by an E10 blend. The simulation results showed that the use of hydrogen gas as an additive in an E10 blend decreases the E10 fuel consumption 23 % on average, and the thermal efficiency is increased approximately 2.13 % , without brake power loss in the IC engine

    Analytical Solutions of the Electrical RLC Circuit via Liouville–Caputo Operators with Local and Non-Local Kernels

    No full text
    In this work we obtain analytical solutions for the electrical RLC circuit model defined with Liouville–Caputo, Caputo–Fabrizio and the new fractional derivative based in the Mittag-Leffler function. Numerical simulations of alternative models are presented for evaluating the effectiveness of these representations. Different source terms are considered in the fractional differential equations. The classical behaviors are recovered when the fractional order α is equal to 1

    Mexico ants: incidence and abundance along the Nearctic–Neotropical interface

    No full text
    International audienceto explore different aspects of the population and community research of ants at different spatial scales, and to aid in the establishment of conservation policies and actions. There are no copyright restrictions. Please cite this data paper when using its data for publications or teaching events

    Mexico's Ants: Who are They and Where do They Live?

    No full text
    International audienc
    corecore